semantic
GeotiffSemanticCache
Bases: SemanticSegmentationCache
Source code in src/tcd_pipeline/cache/semantic.py
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
|
compress_tiles()
Iterate over the tiles in the cache and re-write them as compressed
GeoTIFFs. This usually results in a significant reduction in file
size. The deflate
compression method is used as packbits
can sometimes
fail, and lzw
is often not supported and is slow.
A temporary file is created before being moved to overwrite the source image.
Source code in src/tcd_pipeline/cache/semantic.py
325 326 327 328 329 330 331 332 333 334 335 |
|
generate_vrt(filename='overview.vrt', files=None, root=None)
Generate a virtual raster from the tiles in the cache. This should be called at the end of inference to create an "overview" file that can be used to read all the tiles as a single image.
Source code in src/tcd_pipeline/cache/semantic.py
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
|
save(mask, bbox)
Save a prediction mask into the cache. See save_tile
for
more information on the internal details.
The provided mask should be an unsigned 8-bit array containing prediction values scaled from 0 to 255. Nominally, 0 is used as the nodata value in the cache tile. If the maximum value of the array is greater than 1, then the array is multiplied by 255 and cast to uint8.
The mask can have multiple bands, corresponding to multiple class predictions, but the first channel is assumed to be background and is not stored (as it can be reconstructed from the remaining bands).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mask
|
NDArray
|
prediction result |
required |
bbox
|
box
|
tile bounding box in global image coordinates |
required |
Source code in src/tcd_pipeline/cache/semantic.py
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
|
save_tile(mask, bbox)
Save a model prediction to the tile cache. This function will determine which tiles in the cache overlap with the provided bounding box and the predictions will be split up appropriately. Cache tiles are created lazily - i.e. as needed so it is possible that not all the tiles in the index will be created if there are large regions of empty data in the input image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mask
|
NDArray
|
prediction result |
required |
bbox
|
box
|
tile bounding box in global image pixel coordinates |
required |
Source code in src/tcd_pipeline/cache/semantic.py
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
|
set_prediction_tiles(dataset_tiles)
Pre-compute intersections for dataset tiles which allows for compression operations to happen during prediction. This can keep working storage space much lower than waiting for the prediction to complete before compressing.
By calculating how many hits each cache tile is expected to have, we can run compression when the number of hits (or in this case a counter reaching zero) has happened.
Source code in src/tcd_pipeline/cache/semantic.py
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
|
PickleSemanticCache
Bases: SemanticSegmentationCache
Source code in src/tcd_pipeline/cache/semantic.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
|
SemanticSegmentationCache
Bases: ResultsCache
Source code in src/tcd_pipeline/cache/semantic.py
23 24 25 26 27 28 29 30 31 32 33 34 35 |
|
results: list[dict]
property
Should return a list of dictionaries with the keys:
- mask
- bbox
- image
- tile_id