pipeline
Pipeline
Class for wrapping model instances
Source code in src/tcd_pipeline/pipeline.py
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
|
__init__(model_or_config=Union[dict, str, DictConfig], options=None)
Initialise model pipeline. The simplest way to use this class is to specify a model e.g. "restor/tcd-segformer-mit-b0".
You can also pass a generic configuration "instance" or "semantic" to either the model or config parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_or_config
|
Union(str, DictConfig
|
Model name (repository ID) or config name |
Union[dict, str, DictConfig]
|
options
|
Optional[list[str]]
|
List of options passed to Hydra |
None
|
Source code in src/tcd_pipeline/pipeline.py
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
|
evaluate(**kwargs)
Evaluate the model
Uses settings in the configuration file.
Source code in src/tcd_pipeline/pipeline.py
219 220 221 222 223 224 225 |
|
predict(image, output=None, **kwargs)
Run prediction on an image
If you want to predict over individual arrays/tensors, use the
model.predict
method directly.
If you don't provide an output folder, one will be created in temporary system storage (tempfile.mkdtemp).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image
|
Union[str, DatasetReader]
|
Path to image, or rasterio image |
required |
output
|
Optional[str]
|
Path to output folder |
None
|
Returns:
Name | Type | Description |
---|---|---|
ProcessedResult |
ProcessedResult
|
processed results from the model (e.g. merged tiles) |
Source code in src/tcd_pipeline/pipeline.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
|
train()
Train the model using settings defined in the configuration file
Returns:
Name | Type | Description |
---|---|---|
bool |
Any
|
Whether training was successful or not |
Source code in src/tcd_pipeline/pipeline.py
206 207 208 209 210 211 212 213 214 215 216 217 |
|