Skip to content

instanceprocessor

InstanceSegmentationPostProcessor

Bases: PostProcessor

Source code in src/tcd_pipeline/postprocess/instanceprocessor.py
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
class InstanceSegmentationPostProcessor(PostProcessor):
    def __init__(self, config: dict, image: Optional[rasterio.DatasetReader] = None):
        """Initializes the PostProcessor

        Args:
            config (dict): the configuration
            image (rasterio.DatasetReader, optional): input rasterio image
        """
        super().__init__(config, image)
        self.cache_suffix = None

    def setup_cache(self):
        cache_format = self.config.postprocess.cache_format

        if cache_format == "pickle":
            self.cache = PickleInstanceCache(
                self.cache_folder,
                self.image.name,
                self.config.data.classes,
                self.cache_suffix,
            )
        elif cache_format == "shapefile":
            self.cache = ShapefileInstanceCache(
                self.cache_folder,
                self.image.name,
                self.config.data.classes,
                self.cache_suffix,
            )
        else:
            raise NotImplementedError(f"Cache format {cache_format} is unsupported")

    def detectron_to_instances(
        self,
        predictions: Instances,
        tile_bbox: box,
        edge_tolerance: Optional[int] = 5,
    ) -> list[ProcessedInstance]:
        """Convert a Detectron2 result to a list of ProcessedInstances

        Args:
            predictions (Instances): Detectron instances
            tile_bbox (shapely.geometry.box): the tile bounding box
            edge_tolerance (int): threshold to remove trees at the edge of the image, not applied to canopy

        Returns
            list[ProcessedInstance]: list of instances

        """

        tstart = time.time()
        instances = predictions
        out = []

        for instance_index in range(len(instances)):
            class_idx = int(instances.pred_classes[instance_index])

            bbox_instance_tiled = (
                instances.pred_boxes[instance_index].tensor[0].int().cpu().numpy()
            )

            global_mask = instances.pred_masks[instance_index].cpu().numpy()
            pred_height, pred_width = global_mask.shape

            minx, miny, _, _ = tile_bbox.bounds

            bbox_instance = box(
                minx=minx + max(0, bbox_instance_tiled[0]),
                miny=miny + max(0, bbox_instance_tiled[1]),
                maxx=minx + min(pred_width, bbox_instance_tiled[2]),
                maxy=miny + min(pred_height, bbox_instance_tiled[3]),
            )
            assert bbox_instance.intersects(tile_bbox)

            # Filter tree boxes that touch the edge of the tile
            # TODO change to check thing classes
            if class_idx == Vegetation.TREE:
                if bbox_instance_tiled[0] < edge_tolerance:
                    continue
                if bbox_instance_tiled[1] < edge_tolerance:
                    continue
                if bbox_instance_tiled[2] > (pred_height - edge_tolerance):
                    continue
                if bbox_instance_tiled[3] > (pred_width - edge_tolerance):
                    continue

            local_mask = global_mask[
                bbox_instance_tiled[1] : bbox_instance_tiled[3],
                bbox_instance_tiled[0] : bbox_instance_tiled[2],
            ]

            if instances.has("class_scores"):
                scores = instances.class_scores[instance_index]
            else:
                scores = instances.scores[instance_index]

            new_result = ProcessedInstance(
                class_index=class_idx,
                local_mask=local_mask,
                bbox=bbox_instance,
                score=scores,
                compress="sparse",
            )

            out.append(new_result)

        telapsed = time.time() - tstart
        logger.debug(f"Processed instances {len(instances)} in {telapsed:1.2f}s")

        return out

    def _transform(self, result: dict) -> dict:
        out = {}
        out["instances"] = self.detectron_to_instances(result["predictions"])

        return out

    def cache_result(self, result: dict) -> None:
        """Cache a single tile result

        Args:
            result (dict): result containing the Detectron instances and the bounding box
                           of the tile

        """
        preds, bbox = result["predictions"], result["bbox"]
        instances = self.detectron_to_instances(preds, bbox)
        self.cache.save(instances, bbox)

    def dissolve(self, instances: list[ProcessedInstance]) -> dict:
        """
        Perform a dissolve operation and return a dictionary of merged
        polygons and their sub-polygons (i.e. from the source list).

        Returns a dictionary where the keys are dissolved polygons and
        the values are lists of source geometries that intersected it.

        Args:
            instances (list[ProcessedInstance]): Instance list
        Returns:
            dict [shapely.Polygon -> list[ProcessedInstance]: Mapping between dissolved geometry and source geometries

        """

        # Unary union gives a single geometry - split it into polygons:
        union = shapely.unary_union([i.polygon for i in instances])
        # Case when the union is a single polygon
        if isinstance(union, shapely.geometry.Polygon):
            merged = [union]
        else:
            merged = [g for g in union.geoms]

        out = defaultdict(list)

        # Add the merged/dissolved polygons to a spatial index
        idx = rtree.index.Index()

        for i, m_poly in enumerate(merged):
            idx.insert(i, m_poly.bounds, obj=m_poly)

        used_geoms = set()

        # Iterate over the source instances and associate source <> merged
        for instance in instances:
            poly = instance.polygon
            if np.any(np.isnan(poly.bounds)):
                continue
            # BBOX intersection
            potential_candidates = idx.intersection(poly.bounds, objects=True)
            for n in potential_candidates:
                # Polygon intersection
                if poly.intersects(n.object) and instance.polygon not in used_geoms:
                    out[n.object].append(instance)
                    used_geoms.add(instance.polygon)

        return out

    def filter_centroids(
        self, instances: list[ProcessedInstance], max_overlaps: int = 1
    ) -> list[ProcessedInstance]:
        """
        Filter objects to remove those which contain the centroids
        of others - this is a simple but fairly effective heuristic
        to remove "dumbell" shaped predictions which contain multiple
        individuals.

        Args:
            instances (list[ProcessedInstance]): Instance list to consider merging
            max_overlaps (int): Number of centroids that a polygon can contain to be
                                considered non-overlapping (default 1)
        Returns:
            list[ProcessedInstance]: List of merged instances

        """
        instances = list(instances)

        overlaps = defaultdict(int)

        for a in instances:
            for idx, b in enumerate(instances):
                if a == b:
                    continue
                if a.polygon.centroid.within(b.polygon):
                    overlaps[idx] += 1

        out = []
        for idx, a in enumerate(instances):
            if overlaps[idx] > max_overlaps:
                continue

            out.append(a)

        return out

    def split(
        self, instances: list[ProcessedInstance], iou_threshold=0.3
    ) -> list[ProcessedInstance]:
        """
        Split a list of instances based on heuristics.

        First, instancs are filtered based on whether they
        contain centroids of other instances. Then, any
        instances which have a small overlap are considered
        separate. Instances with a largeer overlap are merged.

        This process continues iteratively until all instances
        have been either merged or split out.

        Args:
            instances (list[ProcessedInstance]): Instance list to consider merging
            iou_threshold(float): Threshold above which to consider a polygon as overlapping
        Returns:
            list[ProcessedInstance]: List of merged instances
        """
        instances = list(instances)
        merged = []

        instances = self.filter_centroids(instances)

        while len(instances) > 0:
            instance_a = instances.pop()
            a_overlaps = False
            ab_union = None

            for idx, instance_b in enumerate(instances):
                if instance_a == instance_b:
                    continue

                ab_intersection = instance_a.polygon.intersection(instance_b.polygon)
                ab_union = instance_a.polygon.union(instance_b.polygon)
                iou = ab_intersection.area / ab_union.area

                if iou < iou_threshold:
                    continue
                else:
                    a_overlaps = True
                    break

            # Base case, no significant overlap
            if not a_overlaps:
                merged.append(instance_a)
            # Otherwise, we should combine a, b
            # and add that polygon back to the
            # instance list.
            else:
                instances.pop(idx)
                instances.append(instance_a + instance_b)

        return merged

    def merge(
        self,
        instances: list[ProcessedInstance],
        class_index: int,
        confidence_threshold: float = 0.3,
        iou_threshold: float = 0.5,
    ) -> list[ProcessedInstance]:
        """Merge a list of instances.

        1) Filter by confidence threshold
        2) Dissovle instances to separate overlapping groups
        3) For each group, split into polygons following simple heuristics
           including IoU and centroid overlap

        Args:
            instances (list[ProcessedInstance]): Instance list to consider merging
            class_index (int): Class filter
            confidence_threshold (float): Confidence threshold
            iou_threshold(float): Threshold above which to consider a polygon as overlapping
        Returns:
            list[ProcessedInstance]: List of merged instances
        """

        merged_instances = []
        instances = list(
            filter(
                lambda x: x.score > confidence_threshold
                and x.class_index == class_index,
                instances,
            )
        )

        for _, instance_group in tqdm(self.dissolve(instances).items()):
            if len(instance_group) == 1:
                instance = instance_group[0]
                merged_instances.append(instance)
            else:
                split_instances = self.split(
                    instance_group, iou_threshold=iou_threshold
                )
                for instance in split_instances:
                    if isinstance(instance.score, list):
                        instance.score = np.median(instance.score)

                    merged_instances.append(instance)

        return merged_instances

    def process(self) -> InstanceSegmentationResult:
        """Processes the result of the detectron model when the tiled version was used

        Returns:
            InstanceSegmentationResult for the job
        """

        logger.debug("Collecting results")
        assert self.image is not None

        if isinstance(self.cache, ShapefileInstanceCache):
            import shutil

            shutil.copytree(
                self.cache.cache_folder, self.config.data.output, dirs_exist_ok=True
            )

        if self.config.postprocess.stateful:
            logger.info("Loading results from cache")
            self.cache.load()
            self.results = self.cache.results

        # Combine instances from individual results
        self.all_instances = set()

        for idx, result in enumerate(self.results):
            for instance in result["instances"]:
                self.all_instances.add(instance)

        self.all_instances = list(self.all_instances)

        # Optionally run NMS
        if self.config.postprocess.use_nms:
            logger.info("Running non-max suppression")
            self.merged_instances = []

            for class_index in [Vegetation.TREE, Vegetation.CANOPY]:
                nms_indices = non_max_suppression(
                    self.all_instances,
                    class_index=class_index,
                    iou_threshold=self.config.postprocess.iou_threshold,
                )

                if isinstance(nms_indices, np.int64):
                    nms_indices = [nms_indices]

                for idx in nms_indices:
                    self.merged_instances.append(self.all_instances[idx])

        else:
            self.merged_instances = self.all_instances

        if self.config.postprocess.dissolve:
            logger.info("Dissolving remaining polygons")
            self.merged_trees = self.merge(
                self.merged_instances, class_index=Vegetation.TREE
            )
            self.merged_canopy = self.merge(
                self.merged_instances, class_index=Vegetation.CANOPY
            )
            self.merged_instances = self.merged_trees + self.merged_canopy

        logger.debug("Result collection complete")

        import os

        save_shapefile(
            self.merged_instances,
            output_path=os.path.join(
                self.config.data.output, "instances_processed.shp"
            ),
            image=self.image,
            include_bbox=None,
        )

        return InstanceSegmentationResult(
            image=self.image, instances=self.merged_instances, config=self.config
        )

__init__(config, image=None)

Initializes the PostProcessor

Parameters:

Name Type Description Default
config dict

the configuration

required
image DatasetReader

input rasterio image

None
Source code in src/tcd_pipeline/postprocess/instanceprocessor.py
28
29
30
31
32
33
34
35
36
def __init__(self, config: dict, image: Optional[rasterio.DatasetReader] = None):
    """Initializes the PostProcessor

    Args:
        config (dict): the configuration
        image (rasterio.DatasetReader, optional): input rasterio image
    """
    super().__init__(config, image)
    self.cache_suffix = None

cache_result(result)

Cache a single tile result

Parameters:

Name Type Description Default
result dict

result containing the Detectron instances and the bounding box of the tile

required
Source code in src/tcd_pipeline/postprocess/instanceprocessor.py
143
144
145
146
147
148
149
150
151
152
153
def cache_result(self, result: dict) -> None:
    """Cache a single tile result

    Args:
        result (dict): result containing the Detectron instances and the bounding box
                       of the tile

    """
    preds, bbox = result["predictions"], result["bbox"]
    instances = self.detectron_to_instances(preds, bbox)
    self.cache.save(instances, bbox)

detectron_to_instances(predictions, tile_bbox, edge_tolerance=5)

Convert a Detectron2 result to a list of ProcessedInstances

Parameters:

Name Type Description Default
predictions Instances

Detectron instances

required
tile_bbox box

the tile bounding box

required
edge_tolerance int

threshold to remove trees at the edge of the image, not applied to canopy

5

Returns list[ProcessedInstance]: list of instances

Source code in src/tcd_pipeline/postprocess/instanceprocessor.py
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
def detectron_to_instances(
    self,
    predictions: Instances,
    tile_bbox: box,
    edge_tolerance: Optional[int] = 5,
) -> list[ProcessedInstance]:
    """Convert a Detectron2 result to a list of ProcessedInstances

    Args:
        predictions (Instances): Detectron instances
        tile_bbox (shapely.geometry.box): the tile bounding box
        edge_tolerance (int): threshold to remove trees at the edge of the image, not applied to canopy

    Returns
        list[ProcessedInstance]: list of instances

    """

    tstart = time.time()
    instances = predictions
    out = []

    for instance_index in range(len(instances)):
        class_idx = int(instances.pred_classes[instance_index])

        bbox_instance_tiled = (
            instances.pred_boxes[instance_index].tensor[0].int().cpu().numpy()
        )

        global_mask = instances.pred_masks[instance_index].cpu().numpy()
        pred_height, pred_width = global_mask.shape

        minx, miny, _, _ = tile_bbox.bounds

        bbox_instance = box(
            minx=minx + max(0, bbox_instance_tiled[0]),
            miny=miny + max(0, bbox_instance_tiled[1]),
            maxx=minx + min(pred_width, bbox_instance_tiled[2]),
            maxy=miny + min(pred_height, bbox_instance_tiled[3]),
        )
        assert bbox_instance.intersects(tile_bbox)

        # Filter tree boxes that touch the edge of the tile
        # TODO change to check thing classes
        if class_idx == Vegetation.TREE:
            if bbox_instance_tiled[0] < edge_tolerance:
                continue
            if bbox_instance_tiled[1] < edge_tolerance:
                continue
            if bbox_instance_tiled[2] > (pred_height - edge_tolerance):
                continue
            if bbox_instance_tiled[3] > (pred_width - edge_tolerance):
                continue

        local_mask = global_mask[
            bbox_instance_tiled[1] : bbox_instance_tiled[3],
            bbox_instance_tiled[0] : bbox_instance_tiled[2],
        ]

        if instances.has("class_scores"):
            scores = instances.class_scores[instance_index]
        else:
            scores = instances.scores[instance_index]

        new_result = ProcessedInstance(
            class_index=class_idx,
            local_mask=local_mask,
            bbox=bbox_instance,
            score=scores,
            compress="sparse",
        )

        out.append(new_result)

    telapsed = time.time() - tstart
    logger.debug(f"Processed instances {len(instances)} in {telapsed:1.2f}s")

    return out

dissolve(instances)

Perform a dissolve operation and return a dictionary of merged polygons and their sub-polygons (i.e. from the source list).

Returns a dictionary where the keys are dissolved polygons and the values are lists of source geometries that intersected it.

Parameters:

Name Type Description Default
instances list[ProcessedInstance]

Instance list

required

Returns: dict [shapely.Polygon -> list[ProcessedInstance]: Mapping between dissolved geometry and source geometries

Source code in src/tcd_pipeline/postprocess/instanceprocessor.py
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
def dissolve(self, instances: list[ProcessedInstance]) -> dict:
    """
    Perform a dissolve operation and return a dictionary of merged
    polygons and their sub-polygons (i.e. from the source list).

    Returns a dictionary where the keys are dissolved polygons and
    the values are lists of source geometries that intersected it.

    Args:
        instances (list[ProcessedInstance]): Instance list
    Returns:
        dict [shapely.Polygon -> list[ProcessedInstance]: Mapping between dissolved geometry and source geometries

    """

    # Unary union gives a single geometry - split it into polygons:
    union = shapely.unary_union([i.polygon for i in instances])
    # Case when the union is a single polygon
    if isinstance(union, shapely.geometry.Polygon):
        merged = [union]
    else:
        merged = [g for g in union.geoms]

    out = defaultdict(list)

    # Add the merged/dissolved polygons to a spatial index
    idx = rtree.index.Index()

    for i, m_poly in enumerate(merged):
        idx.insert(i, m_poly.bounds, obj=m_poly)

    used_geoms = set()

    # Iterate over the source instances and associate source <> merged
    for instance in instances:
        poly = instance.polygon
        if np.any(np.isnan(poly.bounds)):
            continue
        # BBOX intersection
        potential_candidates = idx.intersection(poly.bounds, objects=True)
        for n in potential_candidates:
            # Polygon intersection
            if poly.intersects(n.object) and instance.polygon not in used_geoms:
                out[n.object].append(instance)
                used_geoms.add(instance.polygon)

    return out

filter_centroids(instances, max_overlaps=1)

Filter objects to remove those which contain the centroids of others - this is a simple but fairly effective heuristic to remove "dumbell" shaped predictions which contain multiple individuals.

Parameters:

Name Type Description Default
instances list[ProcessedInstance]

Instance list to consider merging

required
max_overlaps int

Number of centroids that a polygon can contain to be considered non-overlapping (default 1)

1

Returns: list[ProcessedInstance]: List of merged instances

Source code in src/tcd_pipeline/postprocess/instanceprocessor.py
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
def filter_centroids(
    self, instances: list[ProcessedInstance], max_overlaps: int = 1
) -> list[ProcessedInstance]:
    """
    Filter objects to remove those which contain the centroids
    of others - this is a simple but fairly effective heuristic
    to remove "dumbell" shaped predictions which contain multiple
    individuals.

    Args:
        instances (list[ProcessedInstance]): Instance list to consider merging
        max_overlaps (int): Number of centroids that a polygon can contain to be
                            considered non-overlapping (default 1)
    Returns:
        list[ProcessedInstance]: List of merged instances

    """
    instances = list(instances)

    overlaps = defaultdict(int)

    for a in instances:
        for idx, b in enumerate(instances):
            if a == b:
                continue
            if a.polygon.centroid.within(b.polygon):
                overlaps[idx] += 1

    out = []
    for idx, a in enumerate(instances):
        if overlaps[idx] > max_overlaps:
            continue

        out.append(a)

    return out

merge(instances, class_index, confidence_threshold=0.3, iou_threshold=0.5)

Merge a list of instances.

1) Filter by confidence threshold 2) Dissovle instances to separate overlapping groups 3) For each group, split into polygons following simple heuristics including IoU and centroid overlap

Parameters:

Name Type Description Default
instances list[ProcessedInstance]

Instance list to consider merging

required
class_index int

Class filter

required
confidence_threshold float

Confidence threshold

0.3
iou_threshold(float)

Threshold above which to consider a polygon as overlapping

required

Returns: list[ProcessedInstance]: List of merged instances

Source code in src/tcd_pipeline/postprocess/instanceprocessor.py
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
def merge(
    self,
    instances: list[ProcessedInstance],
    class_index: int,
    confidence_threshold: float = 0.3,
    iou_threshold: float = 0.5,
) -> list[ProcessedInstance]:
    """Merge a list of instances.

    1) Filter by confidence threshold
    2) Dissovle instances to separate overlapping groups
    3) For each group, split into polygons following simple heuristics
       including IoU and centroid overlap

    Args:
        instances (list[ProcessedInstance]): Instance list to consider merging
        class_index (int): Class filter
        confidence_threshold (float): Confidence threshold
        iou_threshold(float): Threshold above which to consider a polygon as overlapping
    Returns:
        list[ProcessedInstance]: List of merged instances
    """

    merged_instances = []
    instances = list(
        filter(
            lambda x: x.score > confidence_threshold
            and x.class_index == class_index,
            instances,
        )
    )

    for _, instance_group in tqdm(self.dissolve(instances).items()):
        if len(instance_group) == 1:
            instance = instance_group[0]
            merged_instances.append(instance)
        else:
            split_instances = self.split(
                instance_group, iou_threshold=iou_threshold
            )
            for instance in split_instances:
                if isinstance(instance.score, list):
                    instance.score = np.median(instance.score)

                merged_instances.append(instance)

    return merged_instances

process()

Processes the result of the detectron model when the tiled version was used

Returns:

Type Description
InstanceSegmentationResult

InstanceSegmentationResult for the job

Source code in src/tcd_pipeline/postprocess/instanceprocessor.py
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
def process(self) -> InstanceSegmentationResult:
    """Processes the result of the detectron model when the tiled version was used

    Returns:
        InstanceSegmentationResult for the job
    """

    logger.debug("Collecting results")
    assert self.image is not None

    if isinstance(self.cache, ShapefileInstanceCache):
        import shutil

        shutil.copytree(
            self.cache.cache_folder, self.config.data.output, dirs_exist_ok=True
        )

    if self.config.postprocess.stateful:
        logger.info("Loading results from cache")
        self.cache.load()
        self.results = self.cache.results

    # Combine instances from individual results
    self.all_instances = set()

    for idx, result in enumerate(self.results):
        for instance in result["instances"]:
            self.all_instances.add(instance)

    self.all_instances = list(self.all_instances)

    # Optionally run NMS
    if self.config.postprocess.use_nms:
        logger.info("Running non-max suppression")
        self.merged_instances = []

        for class_index in [Vegetation.TREE, Vegetation.CANOPY]:
            nms_indices = non_max_suppression(
                self.all_instances,
                class_index=class_index,
                iou_threshold=self.config.postprocess.iou_threshold,
            )

            if isinstance(nms_indices, np.int64):
                nms_indices = [nms_indices]

            for idx in nms_indices:
                self.merged_instances.append(self.all_instances[idx])

    else:
        self.merged_instances = self.all_instances

    if self.config.postprocess.dissolve:
        logger.info("Dissolving remaining polygons")
        self.merged_trees = self.merge(
            self.merged_instances, class_index=Vegetation.TREE
        )
        self.merged_canopy = self.merge(
            self.merged_instances, class_index=Vegetation.CANOPY
        )
        self.merged_instances = self.merged_trees + self.merged_canopy

    logger.debug("Result collection complete")

    import os

    save_shapefile(
        self.merged_instances,
        output_path=os.path.join(
            self.config.data.output, "instances_processed.shp"
        ),
        image=self.image,
        include_bbox=None,
    )

    return InstanceSegmentationResult(
        image=self.image, instances=self.merged_instances, config=self.config
    )

split(instances, iou_threshold=0.3)

Split a list of instances based on heuristics.

First, instancs are filtered based on whether they contain centroids of other instances. Then, any instances which have a small overlap are considered separate. Instances with a largeer overlap are merged.

This process continues iteratively until all instances have been either merged or split out.

Parameters:

Name Type Description Default
instances list[ProcessedInstance]

Instance list to consider merging

required
iou_threshold(float)

Threshold above which to consider a polygon as overlapping

required

Returns: list[ProcessedInstance]: List of merged instances

Source code in src/tcd_pipeline/postprocess/instanceprocessor.py
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
def split(
    self, instances: list[ProcessedInstance], iou_threshold=0.3
) -> list[ProcessedInstance]:
    """
    Split a list of instances based on heuristics.

    First, instancs are filtered based on whether they
    contain centroids of other instances. Then, any
    instances which have a small overlap are considered
    separate. Instances with a largeer overlap are merged.

    This process continues iteratively until all instances
    have been either merged or split out.

    Args:
        instances (list[ProcessedInstance]): Instance list to consider merging
        iou_threshold(float): Threshold above which to consider a polygon as overlapping
    Returns:
        list[ProcessedInstance]: List of merged instances
    """
    instances = list(instances)
    merged = []

    instances = self.filter_centroids(instances)

    while len(instances) > 0:
        instance_a = instances.pop()
        a_overlaps = False
        ab_union = None

        for idx, instance_b in enumerate(instances):
            if instance_a == instance_b:
                continue

            ab_intersection = instance_a.polygon.intersection(instance_b.polygon)
            ab_union = instance_a.polygon.union(instance_b.polygon)
            iou = ab_intersection.area / ab_union.area

            if iou < iou_threshold:
                continue
            else:
                a_overlaps = True
                break

        # Base case, no significant overlap
        if not a_overlaps:
            merged.append(instance_a)
        # Otherwise, we should combine a, b
        # and add that polygon back to the
        # instance list.
        else:
            instances.pop(idx)
            instances.append(instance_a + instance_b)

    return merged