Skip to content

instancesegmentationresult

InstanceSegmentationResult

Bases: ProcessedResult

A processed result of a model. It contains all trees separately and also a global tree mask, canopy mask and image

Source code in src/tcd_pipeline/result/instancesegmentationresult.py
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
class InstanceSegmentationResult(ProcessedResult):
    """A processed result of a model. It contains all trees separately and also a global tree mask, canopy mask and image"""

    def __init__(
        self,
        image: rasterio.DatasetReader,
        instances: Optional[list] = [],
        confidence_threshold: float = 0.5,
        config: dict = None,
    ) -> None:
        """Initializes the Processed Result

        Args:
            image (rasterio.DatasetReader): source image that instances are referenced to
            instances (List[ProcessedInstance], optional): list of all instances. Defaults to []].
            confidence_threshold (float): confidence threshold for retrieving instances. Defaults to 0.5
        """
        self.image = image
        self.instances = instances
        self.valid_region = None
        self.valid_mask = None
        self.prediction_time_s = -1
        self.config = config

        self.valid_window = rasterio.windows.from_bounds(
            *self.image.bounds, transform=self.image.transform
        )

        self.set_threshold(confidence_threshold)

    @classmethod
    def from_shapefile(
        cls, image_path: str, shapefile: str, confidence_threshold=0.5, config=None
    ):
        """
        Return an InstanceSegmentationResult from a shapefile and an image
        """
        instances = []
        dataset = rasterio.open(image_path)

        t = ~dataset.transform
        transform = t.to_shapely()

        with fiona.open(shapefile) as cxn:
            for f in cxn:
                class_index = f["properties"]["class_idx"]
                score = f["properties"]["score"]

                try:
                    # World coords
                    polygon = shapely.geometry.shape(f["geometry"])

                    # Image coords
                    global_polygon = shapely.affinity.affine_transform(
                        polygon, transform
                    )

                    bbox = shapely.geometry.box(*global_polygon.bounds)

                    instance = ProcessedInstance(
                        score=score,
                        bbox=bbox,
                        class_index=class_index,
                        global_polygon=global_polygon,
                    )
                    instances.append(instance)
                # If we can't load an object, try to fail gracefully?
                except AttributeError:
                    continue

        res = cls(
            image=dataset,
            instances=instances,
            confidence_threshold=confidence_threshold,
            config=config,
        )

        return res

    def _filter_roi(self):
        if self.valid_region is not None:
            self.instances = [
                instance
                for instance in self.instances
                if instance.transformed_polygon(self.image.transform).intersects(
                    self.valid_region
                )
            ]

            self.valid_window = rasterio.features.geometry_window(
                self.image, [self.valid_region]
            )

            self.valid_mask = rasterio.features.geometry_mask(
                [self.valid_region],
                out_shape=self.image.shape,
                transform=self.image.transform,
                invert=True,
            )[self.valid_window.toslices()]

            logger.info("Valid region and masks generated.")

        else:
            logger.warning("Unable to filter instances as no ROI has been set.")

    def get_instances(self, only_labeled=False) -> list[ProcessedInstance]:
        """Gets the instances that have at score above the threshold

        Returns:
            List[ProcessedInstance]: List of processed instances, all classes
            only_labeled (bool): whether or not to only return labeled instances
        """
        if not only_labeled:
            return [
                instance
                for instance in self.instances
                if instance.score >= self.confidence_threshold
            ]
        else:
            return [
                instance
                for instance in self.instances
                if instance.score >= self.confidence_threshold
                and instance.label is not None
            ]

    def get_trees(self, only_labeled=False) -> list:
        """Gets the trees with a score above the threshold

        Returns:
            List[ProcessedInstance]: List of trees
            only_labeled (bool): whether or not to only return labeled instances
        """
        if not only_labeled:
            return [
                instance
                for instance in self.instances
                if instance.score >= self.confidence_threshold
                and instance.class_index == Vegetation.TREE
            ]
        else:
            return [
                instance
                for instance in self.instances
                if instance.score >= self.confidence_threshold
                and instance.label is not None
                and instance.class_index == Vegetation.TREE
            ]

    def visualise(
        self,
        output_path: Optional[str] = None,
        color_trees: Optional[tuple[int, int, int]] = (255, 105, 180),
        color_canopy: Optional[tuple[int, int, int]] = (255, 243, 0),
        show_canopy=False,
        alpha: Optional[float] = 0.5,
        labels: Optional[bool] = False,
        max_pixels: Optional[tuple[int, int]] = None,
        **kwargs: Optional[Any],
    ) -> None:
        """Visualizes the result

        Args:
            color_trees (tuple, optional): rgb value of the trees. Defaults to (204, 0, 0).
            color_canopy (tuple, optional): rgb value of the canopy. Defaults to (0, 0, 204).
            alpha (float, optional): alpha value. Defaults to 0.3.
            output_path (str, optional): if provided, save image instead of showing it
            max_pixels (tuple, optional): max pixel size of output image (memory optimization)
            labels (bool, optional): whether or not to show the labels.
        """
        fig, ax = plt.subplots(**kwargs)
        plt.axis("off")

        tree_mask = self.tree_mask
        canopy_mask = self.canopy_mask

        reshape_factor = 1
        if max_pixels is not None:
            reshape_factor = min(
                max_pixels[0] / self.valid_window.height,
                max_pixels[1] / self.valid_window.width,
            )
            reshape_factor = min(reshape_factor, 1)

        shape = (
            math.ceil(self.valid_window.height * reshape_factor),
            math.ceil(self.valid_window.width * reshape_factor),
        )

        vis_image = self.image.read(
            out_shape=(self.image.count, shape[0], shape[1]),
            resampling=Resampling.bilinear,
            masked=True,
            window=self.valid_window,
        ).transpose(1, 2, 0)

        if self.valid_mask is not None:
            if reshape_factor != 1:
                vis_image = vis_image * np.expand_dims(
                    resize(self.valid_mask, shape), -1
                )
            else:
                vis_image = vis_image * np.expand_dims(self.valid_mask, -1)

        resized_tree_mask = tree_mask
        resized_canopy_mask = canopy_mask

        if reshape_factor < 1:
            resized_tree_mask = resize(tree_mask, shape)
            resized_canopy_mask = resize(canopy_mask, shape)

        ax.imshow(vis_image)

        resized_canopy_mask = canopy_mask
        if reshape_factor < 1:
            resized_canopy_mask = resize(self.canopy_mask, shape)

        if show_canopy:
            canopy_mask_image = np.zeros(
                (*resized_canopy_mask.shape, 4), dtype=np.uint8
            )
            canopy_mask_image[resized_canopy_mask > 0] = list(color_canopy) + [255]
            ax.imshow(canopy_mask_image, alpha=alpha)

        resized_tree_mask = tree_mask
        if reshape_factor < 1:
            resized_tree_mask = resize(tree_mask, shape)

        tree_mask_image = np.zeros((*resized_tree_mask.shape, 4), dtype=np.uint8)
        tree_mask_image[resized_tree_mask > 0] = list(color_trees) + [255]

        from skimage import measure

        contours = measure.find_contours(resized_tree_mask, 0.5)

        ax.imshow(tree_mask_image, alpha=alpha)
        for contour in contours:
            ax.plot(
                contour[:, 1],
                contour[:, 0],
                linewidth=0.3,
                color=[c / 255.0 for c in color_trees],
                alpha=min(1, 1.4 * alpha),
            )

        if labels:
            x = []
            y = []
            c = []

            # TODO: Remove Seaborn dependency
            colors = sns.color_palette("bright", 10)
            for tree in self.get_trees():
                coords_poly = tree.polygon.centroid.coords[0]
                coords = [coords_poly[1], coords_poly[0]]

                if tree.label is not None:
                    x.append(coords[1] * reshape_factor)
                    y.append(coords[0] * reshape_factor)
                    c.append(colors[tree.label])

            ax.scatter(x=x, y=y, color=c, s=4)

        plt.tight_layout()

        if output_path is not None:
            plt.savefig(output_path, bbox_inches="tight", dpi=600)
        else:
            plt.show()

    def serialise(
        self,
        output_folder: str,
        overwrite: bool = True,
        file_prefix: Optional[str] = "results",
    ) -> dict:
        """Serialise results to a COCO JSON file.

        Args:
            output_folder (str): output folder
            overwrite (bool, optional): overwrite existing data, defaults True
            file_prefix (str, optional): file name, defaults to results
        """

        logger.info(f"Serialising results to {output_folder}/{file_prefix}.json")
        os.makedirs(output_folder, exist_ok=True)
        output_path = os.path.join(output_folder, f"{file_prefix}.json")

        if os.path.exists(output_path) and not overwrite:
            logger.error(
                f"Output file already exists {output_path}, will not overwrite."
            )

        categories = {
            Vegetation.TREE: Vegetation.TREE.name.lower(),
            Vegetation.CANOPY: Vegetation.CANOPY.name.lower(),
        }

        meta = {}
        meta["threshold"] = self.confidence_threshold
        meta["prediction_time_s"] = self.prediction_time_s
        # meta["config"] = self.config
        meta["hardware"] = self.get_hardware_information()

        return dump_instances_coco(
            output_path,
            instances=self.instances,
            image_path=self.image.name,
            categories=categories,
            metadata=meta,
        )

    @classmethod
    def load(
        cls,
        input_file: str,
        image_path: Optional[str] = None,
        use_basename: Optional[bool] = True,
        global_mask: Optional[bool] = False,
    ):
        """Loads a ProcessedResult based on a COCO formatted json serialization file. This is useful
        if you want to load in another dataset that uses COCO formatting, or for example if you want
        to load results from a single image. The json file must have an 'images' entry. If you don't
        provide a path then we assume that you want all the results.

        Args:
            input_file (str): serialised instances as COCO-formatted JSON file
            image_path (str, optional): Path where the image is stored. Defaults to the location mentioned in the output_file.
            use_basename (bool, optional): Use basename of image to query file, defaults True
        Returns:
            ProcessedResult: ProcessedResult described by the file
        """
        instances = []

        reader = pycocotools.coco.COCO(input_file)

        if image_path is None:
            image_id = 0
        else:
            query = os.path.basename(image_path) if use_basename else image_path

            image_id = None
            if len(reader.dataset["images"]) == 1:
                image_id = reader.dataset["images"][0]["id"]
            else:
                for img in reader.dataset["images"]:
                    if img["file_name"] == query:
                        image_id = img["id"]

        ann_ids = reader.getAnnIds([image_id])

        if len(ann_ids) == 0:
            logger.warning("No annotations found with this image ID.")

        image = rasterio.open(image_path)

        for ann_id in tqdm(ann_ids):
            annotation = reader.anns[ann_id]
            instance = ProcessedInstance.from_coco_dict(
                annotation, image.shape, global_mask
            )
            if np.count_nonzero(instance.local_mask) != 0:
                instances.append(instance)

        if "metadata" in reader.dataset:
            conf_thresh = reader.dataset["metadata"].get("threshold", 0)
            config = reader.dataset["metadata"].get("config", {})
            pred_time = reader.dataset["metadata"].get("prediction_time_s", -1)
        else:
            conf_thresh = 0.2
            config = {}
            pred_time = -1

        res = cls(
            image,
            instances,
            confidence_threshold=conf_thresh,
            config=config,
        )
        res.prediction_time_s = pred_time

        return res

    def _generate_masks(self):
        self.canopy_mask = self._generate_mask(Vegetation.CANOPY)
        self.tree_mask = self._generate_mask(Vegetation.TREE)

    def _generate_mask(self, class_id: Vegetation) -> npt.NDArray:
        """Generates a global mask for the given class_id

        Args:
            class_id (Vegetation): Class ID for the mask to be generated

        Returns:
            np.array: mask

        """

        mask = np.full((self.image.height, self.image.width), fill_value=False)
        for instance in self.get_instances():
            if instance.class_index == class_id:
                try:
                    from tcd_pipeline.util import paste_array

                    minx, miny, _, _ = instance.bbox.bounds

                    paste_array(
                        mask,
                        instance.local_mask,
                        offset=(int(minx), int(miny)),
                    )
                except Exception as e:
                    logger.warning("Failed to process instance: {}".format(e))

        if self.valid_mask is not None:
            mask = mask[self.valid_window.toslices()] * self.valid_mask

        return mask

    def save_masks(
        self,
        output_path: str,
        suffix: Optional[str] = "",
        prefix: Optional[str] = "",
    ) -> None:
        """Save prediction masks for tree and canopy. If a source image is provided
        then it is used for georeferencing the output masks.

        Args:
            output_path (str): folder to store data
            suffix (str, optional): mask filename suffix
            prefix (str, optional): mask filename prefix

        """

        os.makedirs(output_path, exist_ok=True)

        self._save_mask(
            mask=self.tree_mask,
            output_path=os.path.join(output_path, f"{prefix}tree_mask{suffix}.tif"),
        )
        self._save_mask(
            mask=self.canopy_mask,
            output_path=os.path.join(output_path, f"{prefix}canopy_mask{suffix}.tif"),
        )

    def save_shapefile(
        self,
        output_path: str,
        indices: Vegetation = None,
        include_bbox: shapely.geometry.box = None,
    ) -> None:
        """Save instances to a georeferenced shapefile.

        Args:
            output_path (str): output file path
            indices (Vegetation, optional): class index filter
            include_bbox (shapely.geometry.box, optional): whether to include the bounding box of the image
        """

        save_shapefile(
            self.instances,
            output_path=output_path,
            indices=indices,
            include_bbox=include_bbox,
            image=self.image,
            mode="w",
        )

    @property
    def tree_cover(self):
        return np.count_nonzero(self.tree_mask) / self.num_valid_pixels

    def __str__(self) -> str:
        """String representation, returns canopy and tree cover for image."""
        return (
            f"ProcessedResult(n_trees={len(self.get_trees())},"
            f" canopy_cover={self.canopy_cover:.4f}, tree_cover={self.tree_cover:.4f})"
        )

    def _repr_html_(self):
        # Save the plot to a SVG buffer
        from io import BytesIO

        buf = BytesIO()
        plt.imshow(self.tree_mask)
        plt.savefig(buf, format="svg")
        plt.tight_layout()
        plt.close()
        buf.seek(0)
        return buf.getvalue().decode("utf-8")

__init__(image, instances=[], confidence_threshold=0.5, config=None)

Initializes the Processed Result

Parameters:

Name Type Description Default
image DatasetReader

source image that instances are referenced to

required
instances List[ProcessedInstance]

list of all instances. Defaults to []].

[]
confidence_threshold float

confidence threshold for retrieving instances. Defaults to 0.5

0.5
Source code in src/tcd_pipeline/result/instancesegmentationresult.py
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
def __init__(
    self,
    image: rasterio.DatasetReader,
    instances: Optional[list] = [],
    confidence_threshold: float = 0.5,
    config: dict = None,
) -> None:
    """Initializes the Processed Result

    Args:
        image (rasterio.DatasetReader): source image that instances are referenced to
        instances (List[ProcessedInstance], optional): list of all instances. Defaults to []].
        confidence_threshold (float): confidence threshold for retrieving instances. Defaults to 0.5
    """
    self.image = image
    self.instances = instances
    self.valid_region = None
    self.valid_mask = None
    self.prediction_time_s = -1
    self.config = config

    self.valid_window = rasterio.windows.from_bounds(
        *self.image.bounds, transform=self.image.transform
    )

    self.set_threshold(confidence_threshold)

__str__()

String representation, returns canopy and tree cover for image.

Source code in src/tcd_pipeline/result/instancesegmentationresult.py
586
587
588
589
590
591
def __str__(self) -> str:
    """String representation, returns canopy and tree cover for image."""
    return (
        f"ProcessedResult(n_trees={len(self.get_trees())},"
        f" canopy_cover={self.canopy_cover:.4f}, tree_cover={self.tree_cover:.4f})"
    )

from_shapefile(image_path, shapefile, confidence_threshold=0.5, config=None) classmethod

Return an InstanceSegmentationResult from a shapefile and an image

Source code in src/tcd_pipeline/result/instancesegmentationresult.py
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
@classmethod
def from_shapefile(
    cls, image_path: str, shapefile: str, confidence_threshold=0.5, config=None
):
    """
    Return an InstanceSegmentationResult from a shapefile and an image
    """
    instances = []
    dataset = rasterio.open(image_path)

    t = ~dataset.transform
    transform = t.to_shapely()

    with fiona.open(shapefile) as cxn:
        for f in cxn:
            class_index = f["properties"]["class_idx"]
            score = f["properties"]["score"]

            try:
                # World coords
                polygon = shapely.geometry.shape(f["geometry"])

                # Image coords
                global_polygon = shapely.affinity.affine_transform(
                    polygon, transform
                )

                bbox = shapely.geometry.box(*global_polygon.bounds)

                instance = ProcessedInstance(
                    score=score,
                    bbox=bbox,
                    class_index=class_index,
                    global_polygon=global_polygon,
                )
                instances.append(instance)
            # If we can't load an object, try to fail gracefully?
            except AttributeError:
                continue

    res = cls(
        image=dataset,
        instances=instances,
        confidence_threshold=confidence_threshold,
        config=config,
    )

    return res

get_instances(only_labeled=False)

Gets the instances that have at score above the threshold

Returns:

Name Type Description
list[ProcessedInstance]

List[ProcessedInstance]: List of processed instances, all classes

only_labeled bool

whether or not to only return labeled instances

Source code in src/tcd_pipeline/result/instancesegmentationresult.py
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
def get_instances(self, only_labeled=False) -> list[ProcessedInstance]:
    """Gets the instances that have at score above the threshold

    Returns:
        List[ProcessedInstance]: List of processed instances, all classes
        only_labeled (bool): whether or not to only return labeled instances
    """
    if not only_labeled:
        return [
            instance
            for instance in self.instances
            if instance.score >= self.confidence_threshold
        ]
    else:
        return [
            instance
            for instance in self.instances
            if instance.score >= self.confidence_threshold
            and instance.label is not None
        ]

get_trees(only_labeled=False)

Gets the trees with a score above the threshold

Returns:

Name Type Description
list

List[ProcessedInstance]: List of trees

only_labeled bool

whether or not to only return labeled instances

Source code in src/tcd_pipeline/result/instancesegmentationresult.py
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
def get_trees(self, only_labeled=False) -> list:
    """Gets the trees with a score above the threshold

    Returns:
        List[ProcessedInstance]: List of trees
        only_labeled (bool): whether or not to only return labeled instances
    """
    if not only_labeled:
        return [
            instance
            for instance in self.instances
            if instance.score >= self.confidence_threshold
            and instance.class_index == Vegetation.TREE
        ]
    else:
        return [
            instance
            for instance in self.instances
            if instance.score >= self.confidence_threshold
            and instance.label is not None
            and instance.class_index == Vegetation.TREE
        ]

load(input_file, image_path=None, use_basename=True, global_mask=False) classmethod

Loads a ProcessedResult based on a COCO formatted json serialization file. This is useful if you want to load in another dataset that uses COCO formatting, or for example if you want to load results from a single image. The json file must have an 'images' entry. If you don't provide a path then we assume that you want all the results.

Parameters:

Name Type Description Default
input_file str

serialised instances as COCO-formatted JSON file

required
image_path str

Path where the image is stored. Defaults to the location mentioned in the output_file.

None
use_basename bool

Use basename of image to query file, defaults True

True

Returns: ProcessedResult: ProcessedResult described by the file

Source code in src/tcd_pipeline/result/instancesegmentationresult.py
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
@classmethod
def load(
    cls,
    input_file: str,
    image_path: Optional[str] = None,
    use_basename: Optional[bool] = True,
    global_mask: Optional[bool] = False,
):
    """Loads a ProcessedResult based on a COCO formatted json serialization file. This is useful
    if you want to load in another dataset that uses COCO formatting, or for example if you want
    to load results from a single image. The json file must have an 'images' entry. If you don't
    provide a path then we assume that you want all the results.

    Args:
        input_file (str): serialised instances as COCO-formatted JSON file
        image_path (str, optional): Path where the image is stored. Defaults to the location mentioned in the output_file.
        use_basename (bool, optional): Use basename of image to query file, defaults True
    Returns:
        ProcessedResult: ProcessedResult described by the file
    """
    instances = []

    reader = pycocotools.coco.COCO(input_file)

    if image_path is None:
        image_id = 0
    else:
        query = os.path.basename(image_path) if use_basename else image_path

        image_id = None
        if len(reader.dataset["images"]) == 1:
            image_id = reader.dataset["images"][0]["id"]
        else:
            for img in reader.dataset["images"]:
                if img["file_name"] == query:
                    image_id = img["id"]

    ann_ids = reader.getAnnIds([image_id])

    if len(ann_ids) == 0:
        logger.warning("No annotations found with this image ID.")

    image = rasterio.open(image_path)

    for ann_id in tqdm(ann_ids):
        annotation = reader.anns[ann_id]
        instance = ProcessedInstance.from_coco_dict(
            annotation, image.shape, global_mask
        )
        if np.count_nonzero(instance.local_mask) != 0:
            instances.append(instance)

    if "metadata" in reader.dataset:
        conf_thresh = reader.dataset["metadata"].get("threshold", 0)
        config = reader.dataset["metadata"].get("config", {})
        pred_time = reader.dataset["metadata"].get("prediction_time_s", -1)
    else:
        conf_thresh = 0.2
        config = {}
        pred_time = -1

    res = cls(
        image,
        instances,
        confidence_threshold=conf_thresh,
        config=config,
    )
    res.prediction_time_s = pred_time

    return res

save_masks(output_path, suffix='', prefix='')

Save prediction masks for tree and canopy. If a source image is provided then it is used for georeferencing the output masks.

Parameters:

Name Type Description Default
output_path str

folder to store data

required
suffix str

mask filename suffix

''
prefix str

mask filename prefix

''
Source code in src/tcd_pipeline/result/instancesegmentationresult.py
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
def save_masks(
    self,
    output_path: str,
    suffix: Optional[str] = "",
    prefix: Optional[str] = "",
) -> None:
    """Save prediction masks for tree and canopy. If a source image is provided
    then it is used for georeferencing the output masks.

    Args:
        output_path (str): folder to store data
        suffix (str, optional): mask filename suffix
        prefix (str, optional): mask filename prefix

    """

    os.makedirs(output_path, exist_ok=True)

    self._save_mask(
        mask=self.tree_mask,
        output_path=os.path.join(output_path, f"{prefix}tree_mask{suffix}.tif"),
    )
    self._save_mask(
        mask=self.canopy_mask,
        output_path=os.path.join(output_path, f"{prefix}canopy_mask{suffix}.tif"),
    )

save_shapefile(output_path, indices=None, include_bbox=None)

Save instances to a georeferenced shapefile.

Parameters:

Name Type Description Default
output_path str

output file path

required
indices Vegetation

class index filter

None
include_bbox box

whether to include the bounding box of the image

None
Source code in src/tcd_pipeline/result/instancesegmentationresult.py
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
def save_shapefile(
    self,
    output_path: str,
    indices: Vegetation = None,
    include_bbox: shapely.geometry.box = None,
) -> None:
    """Save instances to a georeferenced shapefile.

    Args:
        output_path (str): output file path
        indices (Vegetation, optional): class index filter
        include_bbox (shapely.geometry.box, optional): whether to include the bounding box of the image
    """

    save_shapefile(
        self.instances,
        output_path=output_path,
        indices=indices,
        include_bbox=include_bbox,
        image=self.image,
        mode="w",
    )

serialise(output_folder, overwrite=True, file_prefix='results')

Serialise results to a COCO JSON file.

Parameters:

Name Type Description Default
output_folder str

output folder

required
overwrite bool

overwrite existing data, defaults True

True
file_prefix str

file name, defaults to results

'results'
Source code in src/tcd_pipeline/result/instancesegmentationresult.py
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
def serialise(
    self,
    output_folder: str,
    overwrite: bool = True,
    file_prefix: Optional[str] = "results",
) -> dict:
    """Serialise results to a COCO JSON file.

    Args:
        output_folder (str): output folder
        overwrite (bool, optional): overwrite existing data, defaults True
        file_prefix (str, optional): file name, defaults to results
    """

    logger.info(f"Serialising results to {output_folder}/{file_prefix}.json")
    os.makedirs(output_folder, exist_ok=True)
    output_path = os.path.join(output_folder, f"{file_prefix}.json")

    if os.path.exists(output_path) and not overwrite:
        logger.error(
            f"Output file already exists {output_path}, will not overwrite."
        )

    categories = {
        Vegetation.TREE: Vegetation.TREE.name.lower(),
        Vegetation.CANOPY: Vegetation.CANOPY.name.lower(),
    }

    meta = {}
    meta["threshold"] = self.confidence_threshold
    meta["prediction_time_s"] = self.prediction_time_s
    # meta["config"] = self.config
    meta["hardware"] = self.get_hardware_information()

    return dump_instances_coco(
        output_path,
        instances=self.instances,
        image_path=self.image.name,
        categories=categories,
        metadata=meta,
    )

visualise(output_path=None, color_trees=(255, 105, 180), color_canopy=(255, 243, 0), show_canopy=False, alpha=0.5, labels=False, max_pixels=None, **kwargs)

Visualizes the result

Parameters:

Name Type Description Default
color_trees tuple

rgb value of the trees. Defaults to (204, 0, 0).

(255, 105, 180)
color_canopy tuple

rgb value of the canopy. Defaults to (0, 0, 204).

(255, 243, 0)
alpha float

alpha value. Defaults to 0.3.

0.5
output_path str

if provided, save image instead of showing it

None
max_pixels tuple

max pixel size of output image (memory optimization)

None
labels bool

whether or not to show the labels.

False
Source code in src/tcd_pipeline/result/instancesegmentationresult.py
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
def visualise(
    self,
    output_path: Optional[str] = None,
    color_trees: Optional[tuple[int, int, int]] = (255, 105, 180),
    color_canopy: Optional[tuple[int, int, int]] = (255, 243, 0),
    show_canopy=False,
    alpha: Optional[float] = 0.5,
    labels: Optional[bool] = False,
    max_pixels: Optional[tuple[int, int]] = None,
    **kwargs: Optional[Any],
) -> None:
    """Visualizes the result

    Args:
        color_trees (tuple, optional): rgb value of the trees. Defaults to (204, 0, 0).
        color_canopy (tuple, optional): rgb value of the canopy. Defaults to (0, 0, 204).
        alpha (float, optional): alpha value. Defaults to 0.3.
        output_path (str, optional): if provided, save image instead of showing it
        max_pixels (tuple, optional): max pixel size of output image (memory optimization)
        labels (bool, optional): whether or not to show the labels.
    """
    fig, ax = plt.subplots(**kwargs)
    plt.axis("off")

    tree_mask = self.tree_mask
    canopy_mask = self.canopy_mask

    reshape_factor = 1
    if max_pixels is not None:
        reshape_factor = min(
            max_pixels[0] / self.valid_window.height,
            max_pixels[1] / self.valid_window.width,
        )
        reshape_factor = min(reshape_factor, 1)

    shape = (
        math.ceil(self.valid_window.height * reshape_factor),
        math.ceil(self.valid_window.width * reshape_factor),
    )

    vis_image = self.image.read(
        out_shape=(self.image.count, shape[0], shape[1]),
        resampling=Resampling.bilinear,
        masked=True,
        window=self.valid_window,
    ).transpose(1, 2, 0)

    if self.valid_mask is not None:
        if reshape_factor != 1:
            vis_image = vis_image * np.expand_dims(
                resize(self.valid_mask, shape), -1
            )
        else:
            vis_image = vis_image * np.expand_dims(self.valid_mask, -1)

    resized_tree_mask = tree_mask
    resized_canopy_mask = canopy_mask

    if reshape_factor < 1:
        resized_tree_mask = resize(tree_mask, shape)
        resized_canopy_mask = resize(canopy_mask, shape)

    ax.imshow(vis_image)

    resized_canopy_mask = canopy_mask
    if reshape_factor < 1:
        resized_canopy_mask = resize(self.canopy_mask, shape)

    if show_canopy:
        canopy_mask_image = np.zeros(
            (*resized_canopy_mask.shape, 4), dtype=np.uint8
        )
        canopy_mask_image[resized_canopy_mask > 0] = list(color_canopy) + [255]
        ax.imshow(canopy_mask_image, alpha=alpha)

    resized_tree_mask = tree_mask
    if reshape_factor < 1:
        resized_tree_mask = resize(tree_mask, shape)

    tree_mask_image = np.zeros((*resized_tree_mask.shape, 4), dtype=np.uint8)
    tree_mask_image[resized_tree_mask > 0] = list(color_trees) + [255]

    from skimage import measure

    contours = measure.find_contours(resized_tree_mask, 0.5)

    ax.imshow(tree_mask_image, alpha=alpha)
    for contour in contours:
        ax.plot(
            contour[:, 1],
            contour[:, 0],
            linewidth=0.3,
            color=[c / 255.0 for c in color_trees],
            alpha=min(1, 1.4 * alpha),
        )

    if labels:
        x = []
        y = []
        c = []

        # TODO: Remove Seaborn dependency
        colors = sns.color_palette("bright", 10)
        for tree in self.get_trees():
            coords_poly = tree.polygon.centroid.coords[0]
            coords = [coords_poly[1], coords_poly[0]]

            if tree.label is not None:
                x.append(coords[1] * reshape_factor)
                y.append(coords[0] * reshape_factor)
                c.append(colors[tree.label])

        ax.scatter(x=x, y=y, color=c, s=4)

    plt.tight_layout()

    if output_path is not None:
        plt.savefig(output_path, bbox_inches="tight", dpi=600)
    else:
        plt.show()

save_shapefile(instances, output_path, indices=None, include_bbox=None, image=None, mode='w')

Save instances to a georeferenced shapefile.

Parameters:

Name Type Description Default
output_path str

output file path

required
indices Vegetation

class index filter

None
include_bbox box

whether to include the bounding box of the image

None
Source code in src/tcd_pipeline/result/instancesegmentationresult.py
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
def save_shapefile(
    instances,
    output_path: str,
    indices=None,
    include_bbox: shapely.geometry.box = None,
    image=None,
    mode="w",
) -> None:
    """Save instances to a georeferenced shapefile.

    Args:
        output_path (str): output file path
        indices (Vegetation, optional): class index filter
        include_bbox (shapely.geometry.box, optional): whether to include the bounding box of the image
    """

    schema = {
        "geometry": "MultiPolygon",
        "properties": {
            "score": "float",
            "class": "str",
            "class_idx": "int",
            "id": "int",
        },
    }

    with fiona.open(
        output_path, mode, "ESRI Shapefile", schema=schema, crs=image.crs.wkt
    ) as layer:
        if include_bbox is not None:
            elem = {}

            t = image.transform
            transform = [t.a, t.b, t.d, t.e, t.xoff, t.yoff]
            bbox = shapely.geometry.MultiPolygon(
                [affine_transform(include_bbox, transform)]
            )

            elem["geometry"] = shapely.geometry.mapping(bbox)
            elem["properties"] = {
                "score": -1,
                "class_idx": -1,
                "class": ("bounds"),
            }
            layer.write(elem)

        features = []
        for idx, instance in enumerate(instances):
            if indices is not None and instance.class_index not in indices:
                continue

            elem = {}

            world_polygon = instance.transformed_polygon(image.transform)

            if isinstance(instance.polygon, shapely.geometry.Polygon):
                polygon = shapely.geometry.MultiPolygon([world_polygon])
            else:
                polygon = world_polygon

            mapped_polygon = shapely.geometry.mapping(polygon)
            if mapped_polygon is None:
                continue

            elem["geometry"] = mapped_polygon
            elem["properties"] = {
                "score": instance.score,
                "class_idx": instance.class_index,
                "id": idx,
                "class": (
                    "tree" if instance.class_index == Vegetation.TREE else "canopy"
                ),
            }
            features.append(elem)

        layer.writerecords(features)